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A finite element code has been developed for the prediction of the radiated acoustic field
from the aft fan duct of a turbofan engine. The acoustic field is modelled based on the
assumption that the steady flow in and around the nacelle is irrotational as is the acoustic
perturbation. The geometry of the nacelle is axisymmetric and the acoustic source is
harmonic and decomposed into its angular harmonics. The steady flow is computed on the
acoustic mesh and provides data for the acoustic calculations. The jet is included in the
steady flow potential flow model by separating the interior and exterior flow outside the
aft fan duct with a thin barrier created by disconnecting the computational domain. The
jet and exterior flow are allowed to merge at a defined distance downstream. In the acoustic
radiation model continuity of acoustic particle velocity is implicitly satisfied across the
shear layer by careful treatment of the surface integral which appears in the finite element
method (FEM) formulation. Pressure continuity is enforced by using a penalty constraint
on the shear layer. A model for locally reacting acoustic treatment provides a boundary
condition on the duct walls. An attempt has been made to limit reflections on the artificial
baffle introduced to limit the computational domain, but this is only moderately successful.
An old, but reliable frontal solution routine has been updated with considerable impact
on computational time. Example calculations are given which show the success achieved
in satisfying the complicated interface conditions on the shear layer and the characteristics
of the solutions at relatively high frequencies where the refinement of the mesh becomes
a limiting consideration for practical computations.
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1. INTRODUCTION

In approach and cutback conditions the acoustic field from high by-pass ratio turbofan
engines is dominated by tonal noise generated by blade/vane interactions and radiated
forward from the nacelle inlet and to the rear from the aft fan duct. In order to meet noise
control goals active and passive techniques can be employed to control the source
mechanisms and to attenuate acoustic propagation in the inlet and fan exhaust ducts.
Methods for the prediction of the effects of various noise control measures on far field
acoustic radiation are required in the design process. The investigation reported here is
directed toward the development of a robust computational scheme for the prediction of
the acoustic field attributed to tonal sources typical of blade/vane interaction in the aft
fan duct. It is intended to be coupled to a suitable model of the source mechanism.

The model developed is an extension of computational methods which were developed
for inlet radiation [1–4]. The inlet radiation model was based on the assumption of
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irrotational acoustic perturbations on an irrotational steady flow. A finite element code
was developed which could accurately model the geometric details of an axisymmetric inlet
as well as the steady flow field in and around the inlet, including the effect of forward flight.
Rapid advances in the capabilities of work stations has made it a realistic goal to accurately
predict the acoustic field around realistic geometries at realistic frequencies. Reported here
is the development of a similar model for aft radiated noise. The most significant extension
is the representation of the important effects of the fan duct jet imbedded in the
surrounding flow which includes forward flight effects. The presence of the jet introduces
interesting conditions which must be imposed on acoustic propagation across the shear
layer which confines it. The methods for achieving these conditions in the context of the
finite element method (FEM) are discussed in detail here.

2. FORMULATION OF THE ACOUSTIC RADIATION PROBLEM

The aft radiated acoustic field from a turbofan nacelle is described by a potential
formulation as previously introduced for inlet acoustic radiation [1–4]. Figure 1 is a sketch
of the important geometrical features of the aft fan duct and centre body. The nacelle has
a forward flight Mach number M0, which at large distances is equivalent to a uniform flow
directed away from the fan exhaust duct exit plane. Near the nacelle this velocity field is
non-uniform. The exhaust flow, defined at the source plane by Mach number Mj , emerges
as a potential flow jet and extends down stream confined by a shear layer separating it
from the exterior flow. The shear layer is terminated at a defined length at which point
the jet and external flow merge as potential flows. The potential flow merging of the jet
and exterior flow at the end of the shear layer produces a localized steady flow anomaly
which has not been observed to substantially influence the acoustic radiation.
Computations are to be carried out using the FEM in a domain including the interior of
the aft fan exhaust duct and an exterior region made finite by invoking a radiation
condition at an outer computational boundary and by introducing an artificial baffle
oriented to produce a minimal effect on the acoustic radiation field.

The nacelle geometry and the steady flow field are assumed to be axially symmetric. The
noise source is assumed to be harmonic in time and is decomposed into its angular modal
content, allowing a two-dimensional representation of the acoustic field in an (x, r) plane
through the nacelle axis of symmetry. The solution domain is shown in Figure 2. It is the
x, r plane in cylindrical co-ordinates. The source plane is designated by Cf . The fan or exit
guide vane source is input on this plane by specifying complex amplitudes of incident duct
modes (see references [1–4] for details of the implementation of the source boundary

Figure 1. Sketch of the geometry of the aft fan duct, emphasizing the exhaust flow and shear layer.
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Figure 2. Computational domain showing the boundaries and regions.

condition.). The nacelle outer surface is Cn . The outer boundary of the solution domain
Ca is a circle which is a constant phase surface for an acoustic source located at the origin.
On this boundary a radiation condition is specified. Wave envelope elements [1–4] are used
in the far field to reach the outer boundary with minimal cost in mesh refinement. An
artificial baffle Cb limits the solution domain well upstream of the fan exit plane and is
chosen to be swept in such a way that a minimal effect on the acoustic field is created.
This baffle is a ray from the origin and in principle at large distances from the source it
should be non-reflecting, although near field effects do lead to reflection. The placement
of the baffle must be considered in terms of the likely orientation of the radiated field. The
baffle can be eliminated if computational efficiency is not a limiting factor. The shear layer
Cs which separates the potential flow jet from the potential exterior flow is a rigid boundary
for the calculation of the steady flow field and is a surface across which appropriate
continuity conditions must be satisfied in the acoustic calculations.

The starting point for the formulation of both the steady mean flow and the acoustic
perturbation consists of the mass and momentum equations and the energy equation in
the form of the isentropic equation of state:

1r̂

1t
+9 · (r̂V)=0, (1)

1V
1t

+(V · 9)V=−
1
r̂

9p̂,
p̂
p0

=0 r̂

r01
g

, (2, 3)

where p̂, r̂ and V are fluid properties pressure, density and velocity, at this point in
dimensional form, and p0 and r0 are reference values of pressure and density.
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A weak form of the field equations begins with equation (1) in which solutions for r̂

and V are sought in the class of continuous functions which satisfy the weighted residual
relation

ggg
V
$9W · (r̂V)−W

1r̂

1t% dV=gg
S

Wr̂V · n dS (4)

for every function W(x) in the class of continuous functions. The surface integral is over
the boundaries of the domain of solution and n is the unit normal out of the domain. In
the finite element discretization process which follows, the surface integral must also be
interpreted at each subdomain boundary, namely the boundaries of the individual
elements. The physical boundaries of the solution domain include the boundaries of the
nacelle, including the source plane, the rigid structural boundaries, and absorbing
boundaries such as acoustic treatment. Other boundaries are the artificial baffle introduced
to limit the solution domain and the outer boundary of the solution domain at which a
radiation condition is applied. All of these boundary conditions are introduced through
the surface integral. The boundary integral is observed to involve the mass flux normal
to the boundary. The integral is therefore in terms of an essential conservation quantity,
and this is typical of weak formulations in the framework of the FEM. For boundaries
between subdomains (elements) in the FEM discretization at which there is no surface of
discontinuity the integral produces no net contribution. This follows because on such
boundaries the integrals on either side of the boundary produce contributions equal in
magnitude and opposite in sign. In the present problem this applies to all boundaries
between elements, although, as will be shown, a careful interpretation of the surface
integral must be carried out to establish that it vanishes across the shear layer separating
the outer flow field from the jet with a discontinuity in tangential steady flow. In particular,
it seems to be necessary to start from the yet to be linearized form of the weighted
continuity equation (1), and to carefully linearize it to account for the fact that on the shear
layer, which is displaced due to acoustic perturbations, the integral is interpreted to be
evaluated on the surface of discontinuity in tangential steady flow velocity with the unit
normal defined to reflect this. If the field equation is linearized before the weak formulation
is established, an essential contribution to the boundary integral is lost.

3. BOUNDARY CONDITIONS ON THE SHEAR LAYER

Figure 3 shows the idealized interface between the exterior flow and the jet. The surface
of discontinuity in tangential velocity is assumed to be displaced from the mean position
by

Dr(x, u, t)= z(x, u, t), (5)

where z(x, u, t) is an acoustic perturbation. The normal to the interface is tilted due to
the slope of the shear layer approximately by

Dnb =−
1z

1x
nt , (6)

where nb can be written in terms of the unit vectors n, nt , which are normal and tangent
to the undisplaced shear layer, in the form

nb = n−
1z

1x
nt . (7)
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Figure 3. Geometry of the shear layer interface, showing the acoustically displaced boundary between the jet
and exterior flow.

The orientation of the unit normals here are consistent with the surface below the shear
layer for which the normal out of the fluid is in the direction of the positive normal fluid
particle velocity, but a similar argument applies if the surface above the shear layer is
considered. The tangential component of the normal to the shear layer is an acoustic
perturbation quantity.

The interface conditions across the shear layer can be determined by examining the mass
flux and momentum flux at a moving surface of discontinuity. A particularly good
explanation is given by Karamcheti [5]. The essential results in the case of a discontinuity
in the velocity tangential to the surface of discontinuity are:

(Vu −Vs ) · nb =(Vl −Vs ) · nb =0, r̂u (Vu −Vs ) · nb − r̂l (Vl −Vs ) · nb =0, (8, 9)

r̂uVu · nb (Vu −Vs ) · nb − r̂lVl · nb (Vl −Vs ) · nb = p̂l − p̂u . (10)

Here Vu and Vl are the fluid velocity above and below the discontinuity and Vs is the
velocity of an element on the surface of discontinuity. r̂u and r̂l are the fluid densities above
and below the discontinuity and p̂u and p̂l are the corresponding pressures. Equation (8)
follows from the tangential component of the momentum equation and equation (9) from
the mass continuity equation. Equation (9) is satisfied automatically due to equation (8).
Equation (10) is the component of the momentum equation normal to the discontinuity.
With equations (8) and (10) it is determined that

p̂u = p̂l , (11)

which is the condition that pressure be continuous across the shear layer. The linearized
version of this would require the acoustic perturbation in pressure to be continuous as well
as the pressure of the steady flow.

A linearized version of the surface integral of equation (4) is required for the acoustic
analysis which follows. The fluid velocities are replaced by their perturbation forms
Vu =Vrunt + vu and Vl =Vrlnt + vl , where Vru and Vrl are the mean flow tangential velocities
above and below the discontinuity. The densities are replaced by r̂u = rru + ru and
r̂l = rrl + rl with the possibly different mean densities given by rru and rrl . The acoustic
quantities are now ru and rl . It is also important to note that the velocity of an element
of the surface of discontinuity is an acoustic quantity and is therefore denoted by Vs = vs .
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Equation (7), and equation (8) in linearized form, are equivalent to the familiar conditions
of continuity of particle displacement,

vu · n=
1z

1t
+Vru

1z

1x
, vl · n=

1z

1t
+Vrl

1z

1x
. (12, 13)

The linearized form of the surface integral of equation (4) on the upper and lower surfaces
of the shear layer can then be obtained by using equation (7) and equations (12) and (13)
(and accounting properly for the evaluation of the integral on the surface above the shear
layer):

gg
Ssl

W(r̂V)l · nbl dS=gg
Ssl

Wrrl

1z

1t
dS, (14)

gg
Ssu

W(r̂V)u · nbu dS=−gg
Ssu

Wrru

1z

1t
dS. (15)

It is apparent from equations (14) and (15) that along the shear layer the net contribution
of the surface integrals will vanish if the steady flow densities above and below the shear
layer are the same. If they are different, as in the case of a hot jet in a cold outer medium,
there will be a net contribution which is effectively a distributed source on the shear layer
with a strength proportional to the difference in the steady flow densities. This is
completely consistent with equation (9). It is also consistent with the rigorous analysis
given by Myers [6].

4. LINEARIZED WEAK FORMULATION

A linearized weak formulation is obtained by continuing with equation (4) for which
the linearization of the boundary integral has been examined. Acoustic propagation and
radiation is modelled based on the assumption that the mean flow in and around the
nacelle is irrotational and that the acoustic perturbation is also irrotational. The potential
formulation makes it possible to introduce mean flow and acoustic perturbation velocity
potentials. Acoustic perturbations are assumed on the steady mean flow such that
f
 =fr +f, r̂= rr + r and p̂= pr + p. The acoustic perturbations are assumed to be
harmonic in time and in the angular co-ordinate such that r(x, r, u, t)= r(x, r) ei(hr t−mu),
p(x, r, u, t)= p(x, r) ei(hr t−mu) and f(x, r, u, t)=f(x, r) ei(hr t−mu). The acoustic perturbation
in the shear layer position is also assumed to be harmonic in time and the angular
co-ordinate yielding z(x, u, t)= z(x) ei(hr t−mu). The steady flow density and velocity are rr ,
9fr . In linearized form, the weak formulation of equation (4) becomes [4]

ggg
V

{9W · (rr9f+ r9fr )− ihrWr} dV=ihr gg
Ss

W(rrl − rru )z dS

+ gg
S

W(rr9f+ r9fr ) · n dS. (16)

The weighting functions are taken as W(x, r, u)=W(x, r) eimu. Perturbations are in the
form of angular harmonics proportional to e−imu representing the decomposition of the
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solution periodic in u in a Fourier Series. The angular mode number is a parameter of
the solution. The first surface integral on the right hand side is on the shear layer Ss and
the second surface integral is over all remaining surfaces bounding the domain. Notice that
the unit normal for the second integral is the normal out of the domain at the surface in
question. The weak formulation continues with the linearized momentum equation [4]

r=−
rr

c2
r
(ihrf+9fr · 9f), (17)

which is used to replace r in equation (16), the linearized equation of state,

p= c2
rr, (18)

which is used to produce an alternative form of the momentum equation in terms of
acoustic pressure,

p=−rr (ihrf+9fr · 9f). (19)

Equation (19) is used to define acoustic pressure difference on the shear layer and to
post-process the field solution for f to obtain the acoustic pressure field. The acoustic
particle velocity and acoustic velocity potential are related according to

v=9f. (20)

The linearization process also produces the weighted residual formulation for the steady
flow,

ggg
V

9W · (rr9fr ) dV=gg
S

W(rr9fr ) · n dS, (21)

and the steady flow momentum equation in terms of the speed of sound,

c2
r =1−

(g−1)
2

[9fr · 9fr −M2
a], (22)

and in terms of the steady flow density,

rr =$1−
(g−1)

2
(9fr · 9fr −M2

a)%
1/(g−1)

. (23)

Equations (16) through (23) are in non-dimensional form where f is the acoustic potential,
fr is the local mean flow (reference) potential, r is the acoustic density, rr is the local mean
flow density, and cr is the local speed of sound in the mean flow. All quantities are made
non-dimensional by using the density in the far field, ra, the speed of sound in the far
field, ca, and a reference length which is defined as the duct radius at the source plane,
R, where acoustic modal amplitudes are defined. This plane could be the fan plane or the
exit guide vane plane, but it is not restricted to these locations. The acoustic potential is
non-dimensional with respect to caR, and the acoustic pressure with respect to rac2

a.
Lengths are made non-dimensional with respect to R. Time is scaled with R/ca, leading
to the definition of non-dimensional frequency hr =vR/ca; v is the dimensional source
frequency and Ma =Mo is the Mach number in the far field representing the forward flight
effect.
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Equation (21) is the weighted residual formulation for the calculation of the
compressible potential flow within and around the nacelle. Equations (22) and (23) are
subsidiary relations that can be used in an iterative solution which at each stage uses a
density field derived from the previous iteration step. 9fr , cr , rr are required data for the
weighted residual formulation of the acoustic problem. In the results reported here only
the first iteration of this process is used to define the potential flow field. This is
accomplished by solving the incompressible problem and then computing a variation in
steady flow density and speed of sound.

The second surface integral in equation (16) provides the boundary conditions on the
duct walls and on the source plane. The modelling of duct acoustic treatment in the context
of this integral is discussed in a later section. The acoustic source is specified by the complex
amplitudes of acoustic duct modes at the source plane. On this plane the FEM modal
values of acoustic potential are replaced by the complex amplitudes of the acoustic
potential modes by an eigenfunction expansion. The incident acoustic modal amplitudes
are input and the reflected modal amplitudes are computed as part of the solution. Details
of this procedure are available in references [1–4].

The same surface integral provides the mechanism for introducing the boundary
conditions on the artificial baffle and the non-reflecting boundary condition at large
distances on the outer boundary of the computational domain. These details are also
explained extensively in references [1–4].

Acoustic pressure and particle displacement are continuous across the shear layer. The
continuity of particle displacement is implicit in the handling of the surface integral on
the shear layer. Continuity of pressure must be explicitly enforced. The implementation
of this condition will be discussed presently.

5. COMPUTATIONAL MESH

A particularly sensitive issue which must be resolved is the construction of a mesh which
is consistent with the geometry requirements and which can be generated automatically
from data describing the nacelle and centre body. It is essential that the mesh be structured
to minimize the bandwidth for the linear equation solver. The major constraining feature
is that the trailing edge of the fan duct is thin or cusped. In addition, the near field mesh
must evolve into a smooth transition to the far field wave envelope mesh.

In order to meet all of these requirements, a mesh which combines quadrilateral and
triangular elements has been used. Figure 4 shows the details of the near field mesh. The
interior of the duct and the extended jet uses conventional eight-node quadrilateral
elements. Most of the exterior region is also composed of quadrilateral elements. However,
a fan shaped region of six-node triangular elements is used to allow a transition around
the sharp trialing edge. Primarily due to the constraint on the mesh structure for
minimizing bandwidth, this transition would not be possible with rectangular elements
without introducing severe distortion in the neighbourhood of the trailing edge. The far
field mesh utilizes the wave envelope element concept [1–4], and presents no problems. A
relatively coarse near and far field mesh is shown in Figure 5 and the wave envelope
element region can be seen. Note in Figure 4 that the exhaust duct trailing edge is reflexed,
representing the most severe case.

Mesh generation produces two mesh connectivities. For the potential flow code, velocity
potential is discontinuous across the shear layer dividing the extended jet from the external
flow. Elements are therefore disconnected across the shear layer. For the radiation code,
acoustic velocity potential is also discontinuous across the shear layer. Elements above and
below the shear layer have additional degrees of freedom on the shear layer boundaries
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Figure 4. Aft fan duct near field mesh.

representing acoustic particle displacement, which is continuous across the shear layer. The
mesh for the radiation code therefore introduces two degrees of freedom at the nodes on
the shear layer. There are 11 degrees of freedom for rectangular elements and nine degrees
of freedom for triangular elements on the shear layer. Pressure continuity is enforced by

Figure 5. Aft fan duct far field mesh with wave envelope region.
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Figure 6. Bridging elements on the shear layer.

using a penalty constraint on the shear layer, and it is not necessary to introduce pressure
as an additional variable on the shear layer. However, it has been found convenient to
introduce six-node ‘‘rectangular’’ transition elements of zero thickness between the
standard elements above and below the shear layer for generating the ‘‘penalty element
stiffness matrices’’. In order to maintain consistency in the meshes for the potential flow
calculations and radiation calculations, these elements are accounted for in mesh
generation for both codes. Details of the elements on the shear layer are shown in Figure 6
where for an example a bridging element is inserted between a triangular element above
the shear layer and a rectangular element below the shear layer.

6. STEADY FLOW CALCULATIONS

A potential flow code generates the steady flow field in and around the aft fan duct.
Incompressible potential flow has been assumed as a first approximation. Variations in
density and speed of sound are based on the isentropic equation of state and
incompressible velocity field with specified conditions on Mach number, density, and speed
of sound in the far field. It is within the framework of the general formulation to treat
the potential mean flow as compressible, and the present approach can be viewed as the
‘‘zeroth’’ iteration of the compressible isentropic case. Fully compressible isentropic mean
flow has been used by the first author in acoustic propagation and scattering calculations
in pipes in which no far field radiation is modelled. In the type of problem considered here
the computational overhead required for the several iterations necessary to produce a
compressible mean flow has not been considered justifiable at the present stage of
development.
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Figure 7. Potential field for the steady flow from the aft fan duct and in the surrounding flow field. This case
corresponds to Mj =0·5 and forward flight velocity M0 =0·2.

The potential flow field has been structured to include flow in a jet region downstream
of the fan duct exit plane. This has been done with the introduction of a ‘‘rigid’’ duct
boundary representing the fan exhaust shear layer which extends the prescribed length of
the jet. The rigid boundary is introduced by permitting the velocity potential to be
discontinuous across the shear layer. At the downstream end of the shear layer the
discontinuity in velocity potential is terminated and merging of the interior and external
flows is permitted. The merging can produce very high velocities and reverse flow near the
termination of the shear layer. This is smoothed out by restricting the velocity near the
end of the shear layer to neither go above a reference velocity which is determined midway
along the underside of the shear layer (in the jet) nor to go below a similarly determined
velocity on the upper side of the shear layer (in the outer flow). In the near field mesh of
Figure 4 the shear layer boundary can be seen to extend downstream about two duct radii.
The merging distance is adjustable, and is chosen to provide sufficient distance for full
effect on the acoustic radiation, and to move the perhaps unrealistic merging region away
from the important part of the acoustic field. Computations for the steady flow field are
carried out on the same mesh used in the acoustic case. This is done so that the steady
flow data is produced in a form compatible with the acoustic mesh. The mesh is invariably
much more dense than would be required for the steady flow calculations, however, the
problem is symmetric, and the solution routine is considerably faster than for the
comparable acoustic problem (about three or four times faster for large meshes).

A typical potential flow field is shown in Figure 7, where the jet and surrounding forward
flight effect contours of velocity potential are clearly shown.

7. ACOUSTIC PRESSURE CONTINUITY ON THE SHEAR LAYER

The linearized weak formulation of equation (16) has the subsidiary condition of
continuity of acoustic pressure across the shear layer. This condition is not easily satisfied
because the formulation is in terms of acoustic velocity potential. However, equation (19)
provides a connection between the acoustic velocity potential above and below the shear
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layer which can be exploited to implement the continuity condition by using a penalty
method [7].

The important features of the penalty method can be described relatively easily.
Equation (19) and the condition pressure continuity on the shear layer are used to obtain

Dp= pu − pl = rrl0ihrfl +Ml
1fl

1x1− rru0ihrfu +Mu
1fu

1x 1=0. (24)

Equation (24) applies computationally on the shear layer, r= rj , x1 E xE x2, where rj is
the radius of the axially symmetric shear layer and x1, x2 are the axial co-ordinates of the
left and right ends of the shear layer; x1 coincides with the trailing edge of the nacelle at
the fan exit plane. The subscripts l and u denote values of the steady state and acoustic
quantities below and above the shear layer. In the finite element context, the acoustic
potentials fl and fu can be written notionally in terms of a global interpolation matrix
[N(x)]. For example,

fl (x)= [N(x)]f
– l , (25)

where f
– l is the vector of nodal values of fl (x) below the shear layer. The interpolation

matrix [N(x)] is a row matrix with elements Ni (x), i=1, NN, where NN is the number
of finite element nodes and Ni (xj )=1, i= j, Ni (xj )=0, i$ j, j=1, NN. The substantial
derivative operators in equation (24) are defined such that, for example,

Dl (fl )= rrl0ihr +Ml
1

1x1fl . (26)

In vector–matrix format,

Dl (fl )= [N(x)][Dl ]f– l , (27)

where [Dl ] is a diagonal matrix of operators rrl (ihr +Ml 1/1x). Equation (24) can be written
as

[Np (x)][fl , fu ]T =([N(x)][Dl ]− [N(x)][Du ])[fl , fu ]T =0. (28)

The modified interpolation matrix [Np (x)] has elements which can be viewed as
interpolating Dp(x) from nodal values of the acoustic potential on either side of the shear
layer. The weighted residual of equation (28) is formed on the shear layer using as
weighting functions elements of [N*p (x)], which are the complex conjugates of the
interpolation functions. This yields

gg
Ss

[N*p (x)]T[Np (x)] dSs [fl , fu ]T =0. (29)

This is a weighted residual (or variational) statement that Dp vanishes on the shear layer.
It produces a ‘‘stiffness matrix’’ which is consistent with this statement. If this is appended
to the weighted residual formulation of equation (16) with a large multiplier l, it forces
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the weighted residual formulation to have a solution constrained by equation (24). The
modified weighted residual statement is written as

ggg
V

{9W · (rr9f+ r9fr )− ihrWr} dV=ihr gg
Ss

W(rrl − rru )z dS

+gg
S

W(rr9f+ r9fr ) · n dS

− l gg
Ss

W� Dp dS. (30)

The weighting functions W� (x) introduced in equation (30) are the pressure difference
interpolation functions identified in equation (28). The penalty integral, equation (29), is
introduced along the shear layer and produces penalty stiffness matrices which bridge the
shear layer and include nodal values of acoustic potential on both sides of the shear layer.
This is most easily implemented in the finite element context by introducing transition or
bridging elements on the shear layer as shown in Figure 6. These elements are of zero
thickness with three nodes on the top and three on the bottom to connect to the three nodes
on the conventional triangular or quadrilateral elements above and below the shear layer.
Finite element assembly proceeds as with other elements in the mesh. No new global nodes
are introduced and there is no change in the bandwidth of the formulation nor to the
sequence of operations in the equation solving procedure.

The boundary integral on S represents natural boundary conditions which must be
imposed on the other boundaries of the domain. The far field boundary Ca is at a large
distance from the nacelle and is a non-reflecting surface on which a radiation condition
is applied via the boundary integral. This surface is the outer boundary of wave envelope
elements which allow a transition from a fine mesh near the nacelle to a very coarse mesh
in the far field. Most of the nacelle and centre body surfaces are rigid, where the normal
component of acoustic particle velocity vanishes. In addition, the normal component of
the mean flow velocity also vanishes and the flow tangency condition requires that
9fr · n̄=0, eliminating the boundary integral. A portion of the fan duct and centre body
is acoustically treated. On these surfaces an impedance relation is specified, and this can
be introduced through the boundary integral. The acoustic source is also introduced using
the boundary integral. Details of the imposition of natural boundary conditions can be
found in references [1–4].

In the results presented here there is no difference in steady flow density across the shear
layer. The boundary integral on Ss which arises from considerations of conservation of
acoustic particle displacement across the shear layer therefore vanishes.

8. ACOUSTIC TREATMENT ON DUCT WALLS

In the FEM formulation described here provision has been made for acoustic treatment
on the duct wall and on the centre body. In the present context the acoustic field is
described in terms of an acoustic potential formulation, while the boundary condition
relates pressure and particle velocity. The implementation is described in this section.

A locally reacting acoustic lining material specified by its frequency dependent
impedance or admittance is placed on an interior surface of the duct. The boundary
integral of equation (30) is the mechanism by which the boundary condition imposed by
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this acoustic treatment is introduced. On surfaces where acoustic treatment is present the
normal component of mean flow velocity vanishes and the lining boundary integral
simplifies to

IL =gg
SL

Wrr9f · n dS, (31)

where v · n=9f · n is the normal component of acoustic particle velocity, v. The unit
normal n is directed out of the computational domain and therefore into the acoustic
treatment. The acoustic treatment is described by a local impedance relationship which
connects acoustic pressure to a conceptual wall displacement velocity. In general, the types
of acoustic treatment of interest are porous and the wall intself does not displace but the
fluid in the pores does. It is the fluid velocity in the porous wall, directed normal to the
wall, which is referred to as wall displacement velocity. The impedance relationship is of
the form

p
vn

=Z=
1
A

, (32)

where p is the non-dimensional acoustic pressure and vn is the non-dimensional wall
displacement velocity, directed into the wall. The impedance Z is a prescribed function of
frequency and is non-dimensional with respect to raca, that is, the dimensional impedance
would be racaZ. A is defined as the non-dimensional acoustic admittance. The relation
between the fluid particle velocity at the wall and the wall velocity is one of continuity
of particle displacement. This yields

v · n=201z

1t
+Mw

1z

1x1, (33)

where z(x, u, t)= z(x) ei(hr t−mu) is the wall displacement normal to the wall mean position,
positive directed into the wall, and related to vn by vn = 1z/1t. Mw is the steady flow velocity
at the wall, non-dimensional with respect to ca. The choice of positive or negative sign
depends on whether the acoustic treatment is on the outer or inner wall of an annular duct.
It is assumed that all lined surfaces have negligible curvature in the direction of the duct
axis so that the rigorous description of the flow/surface kinematics [6] is simplified. With
harmonic time dependence,

v · n=
1
ihr 0ihr +Mw

1

1x1vn . (34)

The relation between acoustic particle velocity and acoustic pressure is

v · n=20ihr +Mw
1

1x1Ap. (35)

The relation between acoustic pressure and acoustic velocity potential is provided by the
acoustic Bernoulli equation of equation (19). Equation (35) can be rewritten

v · n=3
1
ihr 0ihr +Mw

1

1x1$rrA0ihr +Mw
1

1x1f%. (36)
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The boundary integral becomes

3gg
SL

rrWv · n dS=ihr gg
SL

WAr2
rf dS+gg

SL

WAr2
rMw

1f

1x
dS

+gg
SL

WrrMw
1

1x
[Arrf] dS−

i
hr gg

SL

WrrMr
1

1x $ArrMw
1f

1x% dS. (37)

The upper and lower sign choice depends on whether the outer or inner wall integral is
considered. The first two integrals on a boundary where acoustic treatment is present are
easy to implement in the finite element formulation because only continuity of acoustic
potential is required. The admittance, A, is assumed piecewise continuous and non-zero
on a portion of the interior surface of the duct. An integration by parts, which is essentially
an application of Stokes’ Theorem on the interior surface, is performed to make the last
two integrals compatible with the weak formulation. The integral representing the
boundary condition on interior surfaces can now be written

3gg
SL

rrWv · n dS=ihr gg
SL

WAr2
rf dS+gg

SL

WAr2
rMw

1f

1x
dS

−gg
SL

(Arrf)
1

1x
(WrrMw ) dS+

i
hr gg

SL

0ArrMw
1f

1x1 1

1x
(WrrMw ) dS. (38)

Equation (38) is in a form which is appropriate for application of standard finite element
techniques to generate ‘‘boundary matrices’’ which are appended to the element stiffness
matrices of elements whose outer boundaries represent acoustically treated surfaces.

9. AN ABSORBING BAFFLE

A restriction of the present FEM mesh is the presence of the baffle which is used to limit
the computational domain, presumably with little reduction in the quality of the solution.
It is assumed that the baffle is swept back at least 90° from the angle of peak radiation,
however, this condition is often violated because it requires a mesh generation change to
accomplish it. In theory the baffle is non-reflecting at large distances from the nacelle since
it is a ray extending from the origin [2]. Near the intersection of the baffle and the nacelle
the baffle is a reflecting surface and its presence has the possibility of contaminating the
solution with spurious reflections. Experience has shown that the baffle has little effect on
the peak lobe in the radiation pattern if the 90° rule is adhered to. However, there has
been interest in using the inlet code and aft radiation code to generate the SPL directivity
on the full 180° arc around the engine. This would be accomplished by separately obtaining
the inlet and aft radiation results and then superposing them. Presumably, the peak lobes
fore and aft would be little affected but the region at 90° to the engine axis would be
critically dependent on a legitimate superposition of the inlet and aft results. This is not
possible to achieve because of the baffle, unless it is completely non-reflecting.

An investigation has been made of the possibility of making the baffle at least partially
non-reflecting. This has been done by introducing absorption on the baffle. As in the case
of the nacelle acoustic treatment, this is done through the surface integral on S in
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equation (30). On the baffle it is assumed that the flow is adequately represented by the
uniform Mach number Ma =Mai. This is true far from the nacelle, and is approximately
true near the nacelle. The acoustic density perturbation is given by equation (17) evaluated
with rr =1 and cr =1, assuming that far field steady flow conditions apply on the baffle.
The surface integral on the baffle can then be written as

gg
Sb

W(rr9f+ r9fr ) · n dS=gg
Sb

W$9f · n−(Ma · n)01f

1t
+Ma · 9f1% dS, (39)

where n is the unit normal of the computational domain. The impedance condition on the
baffle surface is defined simply as

p=
Zb

raca
v · n. (40)

Zb /raca is the non-dimensional impedance and Zb /raca =1/A, where A is the
non-dimensional admittance. This impedance condition corresponds to no real physical
situation but rather is introduced to provide absorption on a notional boundary through
which there is a steady mean flow. The acoustic Bernoulli equation (19) and the definition
of the acoustic velocity potential

v=9f (41)

leads to the conclusion that on the baffle,

9f · n=−
raca

Zb 01f

1t
+Ma · 9f1. (42)

The boundary integral can therefore be written as

gg
Sb

W(rr9f+ r9fr ) · n dS=−gg
Sb

W$0raca

Zb
+Ma · n101f

1t
+Ma · 9f1% dS.

(43)

The boundary integral of equation (43) is applied only in the near field portion of the baffle.
In the wave envelope region the theoretically non-reflecting character of the far field baffle
is left unchanged. The introduction of a locally reacting impedance boundary on the baffle
cannot be expected to produce complete absorption any more than on the wall of a duct.
As will be shown, only a modest absorption can be achieved.

10. POSTPROCESSING

Postprocessing of the acoustic velocity potential solution using the acoustic Bernoulli
equation (19) to obtain acoustic pressure can be carried out in two ways. The approach
which is most efficient computes acoustic pressure at the element nodes using the element
shape functions. The nodal values are then averaged, to account for the fact that
derivatives of potential are not continuous across element boundaries in the FEM
formulation. For sufficiently fine meshes this produces acceptable results. Results presented
in this paper are obtained by this method.

A second method available for postprocessing acoustic velocity potential to obtain
acoustic pressure carries out the calculations at Gauss points in each element. The Gauss
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points are known to be points at which optimal accuracy is achieved in the calculation
of derivatives and therefore in calculation of acoustic pressure. The number of Gauss
points is generally less than the number used in the Gauss integration in the formulation
of the element stiffness matrices. The array of solution points on the grid constructed in
this way can then be plotted as contours of equal acoustic pressure or equal sound pressure
level using one of several available commercial plotting packages.

11. SOLUTION TECHNIQUES

The principal advantage of the FEM formulation described here is that it is
computationally relatively efficient and therefore provides a useful tool for design
calculations. This efficiency decreases as the non-dimensional frequency of the acoustic
source increases, requiring a proportional increase in the mesh density and a
disproportionate increase in computation time (by approximately the square of the ratio
in mesh density). For this reason it is appropriate to give some observations on the linear
equation solving routine which accounts for almost the entire computational time.

Previous fan noise radiation codes [1–4] used a frontal solver due to Irons [8]. This was
extremely efficient in the use of active memory, partly because of considerable data transfer
using direct access I/O in storing and retrieving element stiffness matrices in the
assembly/solution procedure and in retrieving mesh and steady flow data. The resulting
direct access files were subsequently read many times in the various FEM operations and
in postprocessing. This efficiency in storage was offset by a significant cost in execution
time. Nacelle design and source modelling have become the primary uses of the codes and
execution time is a primary issue in a work station environment in which storage has
become a much less limiting factor. Direct access operations are efficient from a
programming standpoint, but inefficient in I/O time. In the version of the radiation code
reported here all direct access I/O has been eliminated in favour of active storage or
sequential I/O. This has resulted in as much as 50% reduction in computation time,
dependent mainly on available fast memory.

Experiments with several popular iterative solution routines show that for the
two-dimensional structure of problems considered here the direct solvers are always faster.
This is consistent with the experience of other investigators [9]. There are indications that
iterative solvers can be faster for similar problems in a three-dimensional geometry. The
choice has been made to retain the modified Irons frontal solver.

12. EXAMPLE CALCULATIONS

The example calculations shown here are obtained on a mesh with about 27 000 degrees
of freedom which is shown in Figures 4 and 5. This mesh becomes inadequate for
non-dimensional frequencies much in excess of hr =25, and with the element distribution
shown does better for acoustic radiation toward the sideline (high angular mode number
or high radial mode number). Angular mode order corresponds to the value of m in the
angular Fourier component e−imu. Radial modes for a specified angular mode are
enumerated beginning with n=1. The geometry of the aft fan duct is generic, including
an extended centre body and thin fan duct lip, in this case reflexed. The exterior Mach
number is Mo =0·2 and the jet Mach number at the source plane is Mj =0·5.

The first result shows the success of the penalty method in implementing the condition
of continuity of acoustic pressure across the shear layer. This is most effectively shown at
low frequency because the acoustic field is relatively simple and the discontinuity in
acoustic potential and continuity in acoustic pressure is easy to see. The frequency chosen
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Figure 8. Contours of equal acoustic potential with Mj =0·5, M0 =0·2. Reduced frequency hr =5·0, input
angular mode m=2, radial mode n=1, no acoustic treatment. Acoustic potential is discontinuous across the
shear layer.

is hr =5 with an angular mode m=2 and radial mode n=1 input with unit pressure
amplitude. The mesh is quite adequate for this low frequency. Figure 8 shows the radiated
field in terms of contours of constant acoustic potential magnitude superimposed on the
computational domain. In this example only five contours are produced to simplify the
plot. The contours range from 15 dB above the maximum level on the outer boundary to
15 dB below. In Figure 8 it is clearly seen that the acoustic potential is discontinuous across
the shear layer. Figure 9 shows similar contours of acoustic pressure and these are seen
to be continuous across the shear layer. The pressure has been obtained by post-processing
the potential field by using equation (19) with FEM interpolation at the nodes. Pressures
thus obtained are averaged at common nodes. It is important to note that nodes across
the shear layer are not common and the pressure across the shear layer is not averaged.
The effectiveness of the penalty method is demonstrated by this example, as is the quality
of the solution at this low frequency. Figure 10 shows an additional method of presentation
of the radiation directivity. This represents calculations of sound pressure level on a
circular arc at a radius of 10 duct radii from the origin, normalized to 100 dB maximum.
In this case it emphasizes how broad the principle lobe is near the peak.

The results of Figure 10 can be used to compare the peak radiation angle in the principal
lobe in the far field to predictions obtained using ray theory. A code has been written which
is based on the analysis of Rice and Saule [10] for estimation of the radiation directivity
from an exhaust duct. It is based on an extended analysis since it considers annular ducts
while the original work of Rice and Saule considered only circular ducts. Propagation
angles in the duct are determined from a formal eigenvalue/eigenfunction analysis and the
convection and refraction effects are included as in reference [10]. It is predicted that the
group velocity in the duct at the specified frequency and in the specified mode, hr =5,
m=2, n=1, is at 34·7°, and the phase velocity is at 51.2°. The peak propagation angle
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Figure 9. Contours of equal acoustic pressure with Mj =0·5, M0 =0·2. Reduced frequency hr =5·0, input
angular mode m=2, radial mode n=1, no acoustic treatment. Acoustic pressure is continuous across the shear
layer.

Figure 10. Radiation directivity on a circle of 10 duct radii centred on the computational origin. Mj =0·50,
M0 =0·20, hr =5·0, m=2, n=1.
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in the far field is estimated to be 49·5°. The observed angle of peak radiation in Figures
7 and 8 is around 50°, but the peak is so broad that it is difficult to pick the angle precisely.
The correlation is excellent, although it must be pointed out that the mesh origin (0·5 duct
radii back from the duct exit plane) is used in defining the directivity in this example. The
Rice/Saule analysis would be based on an origin at the duct exit plane. Because the peak
lobe is so broad there is little point in examining the effect of the origin shift on the stated
comparison. This will be done in the next example which produces a sharper peak lobe.

A higher frequency case with a lower angle of peak radiation is the second example.
In this case the non-dimensional frequency is hr =25 and the modal input is m=10, n=1.
This is getting close to the limit of resolution for the mesh. Figures 11 and 12 show the
two types of presentation for acoustic pressure. Figure 11 showing contours of constant
SPL, while generally reasonably clean, emphasizes the assertion that the limit of resolution
is close at hand. The breakdown of the mesh adequacy always appears in the near to
intermediate field first and is usually related to mesh density in the region between the near
field and the wave envelope region. The number of elements required in the generally radial
direction is critical, and this can be minimized by bringing the wave envelope region in
as close as possible. In the aft radiation case the jet interferes with this, and the wave
envelope region must start far enough out that the jet is nearly entirely merged with the
exterior flow. Figure 12 shows the polar directivity based on an origin at the exit plane
(non-dimensional x=0·5) and demonstrates that these far field calculations are generally
better than the near field because of the wave envelope interpolation. This mesh has been
pushed to hr =35 without complete failure, and has the characteristic that it produces
better results for modes which radiate well to the sideline than for those which radiate at
relatively small angles to the axis as in these examples. This probably results from the
complicated interaction of transmission and reflection of modes at near grazing incidence

Figure 11. Contours of equal acoustic pressure with Mj =0·5, M0 =0·2. Reduced frequency hr =25·0, input
angular mode m=10, radial mode n=1, no acoustic treatment. Acoustic pressure is continuous across the shear
layer.
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Figure 12. Radiation directivity on a circle of 10 duct radii centred on an origin at the fan duct exit plane,
x=0·5, Mj =0·50, M0 =0·20, hr =25·0, m=10, n=1. ——, Case with no acoustic treatment; –––, acoustically
treated case with non-dimensional admittance A=0·811+ i0·081.

Figure 13. Radiation directivity on a circle of 10 duct radii centred on an origin at the fan duct exit plane,
x=0·5, Mj =0·50, M0 =0·20, hr =25·0, m=10, n=1, no acoustic treatment in the duct. ——, Case with the
baffle untreated; –––, case with an absorbing boundary on the baffle in the near field.
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at the shear layer. The mesh shown in Figures 4 and 5 has proven to be a good generic
structure to work with.

Figure 12 can be used to compare the peak radiation angle in the principal lobe in the
far field to predictions obtained using ray theory. It is predicted that the group velocity
in the duct at the specified frequency and in the specified mode, hr =25, m=10, n=1,
is at 27·4°, and the phase velocity is at 39·4°. The peak propagation angle in the far field
is estimated to be 43·9°. The observed angle of peak radiation in Figure 12 is around 42°
and is adjusted for the origin shift to the exit plane. The correlation with the Rice/Saule
result is good, particularly when it is noted that flow conditions along the shear layer in
the FEM calculations are not uniform, and within the jet region the Mach number is
reduced below Mj =0·5 due to the gradual reduction in radius of the centre body. The
effect can be observed if an average Mach number Mj =0·45 in the jet is used in the
Rice/Saule approximation. The ray prediction would yield 41·9° which is about the same
as the FEM prediction which accounts for the non-uniform Mach number in the jet.

An example of the effect of acoustic treatment on the duct walls is also shown in Figure
12. A locally reacting lining with normalized impedance and admittance given by
Z=1·221− i0·122, A=0·811+ i0·081 is assumed in the high frequency case. The
impedance/admittance is optimum for the hr =25, Mj =0·5, m=10, n=1 mode.
The outer wall of the fan exhaust duct and the centre body are lined over a length of
0·916 R beginning at 0·074 R forward of the assumed source plane. The attenuated
directivity shown in Figure 12 reveals an attenuation of as much as 5 or 6 dB at polar
angles below the shifted principal lobe which is now at about 45°. What was once a
relatively well-defined principal lobe is now considerably broadened and beyond 45° there
are areas in which the SPL is increased, primarily due to filling in of interference notches.
The angle shift of the principal lobe is consistent with the fact that the effect of the acoustic
treatment would be to increase the angle of the phase velocity and group velocity vectors
(lower the cut-off ratio) within the duct.

Finally, Figure 13 is used to show the effect of an attempt to reduce the effects of
reflection from the baffle. A resistive ‘‘lining’’ with non-dimensional admittance
A=0·8+ i0·0 has been placed on the baffle in the region of conventional elements (the
wave envelope elements in theory should not produce reflections). It is seen that there is
an observable change in SPL at large polar angles (near the baffle) and in the region near
the exhaust axis where the directly radiated field is at low SPL. Since it is not known what
the true reflection free directivity should look like, no conclusion can be drawn other than
the baffle does have an effect on the directivity at large angles, and that the effect is
modestly changed when the baffle is made dissipative. Perhaps of more importance is the
fact that virtually no effect is observed near the principal lobe, suggesting that the baffle
has correctly been assumed to be non-intrusive in this region.

While not entirely definitive, the results shown here suggest that the FEM model of aft
fan radiation captures the known refraction effects of the shear layer very well. Extensive
bench marking of the code against experiments has been carried out by other investigators
[11, 12]. Comparisons of calculations and measurements have been very good.

13. CONCLUSION

A finite element model for acoustic propagation and radiation within and exterior to
the aft fan duct of a high by-pass turbofan engine has been developed. It is based on the
assumption of irrotational acoustic perturbations on an irrotational steady flow. The jet
is modelled in the steady flow calculations by a potential flow constrained by a shear layer
and allowed to merge with the surrounding flow downstream of the fan duct exit plane.
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The formulation is restricted to axisymmetric geometries and harmonic sources described
by their angular and radial modal content. The condition of acoustic particle displacement
continuity across the shear layer is shown to be satisfied by proper interpretation of a
boundary integral which occurs in the FEM formulation. Continuity of acoustic pressure
is implemented by introducing a penalty method based on the relationship between
acoustic pressure and velocity potential. Example calculations have shown that the
continuity of pressure is accurately enforced. Resolution of accurate solutions at high
non-dimensional frequencies is limited by mesh density which has implications on storage
requirements and execution time. In the present study computations with over 27 000
degrees of freedom have been shown to produce reasonable results up to the reduced
frequency hr =25. Doubling the frequency would require an approximate doubling of the
density of the mesh.
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